15.12.2000 Christian Schmolke

Alkylierung von Enolaten

Darstellung von Enolaten:

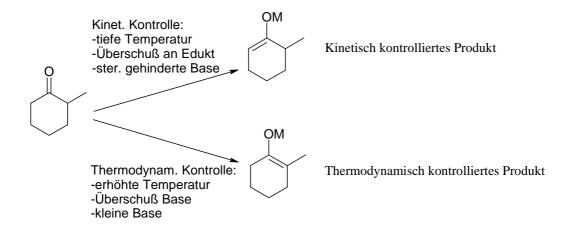
Man kann bei der Darstellung E- und Z-Enolate erhalten. Um gezielt E- oder Z- Enolate darzustellen verwendet man oft Bor-Verbindungen, da sie sich nicht zum unerwünschten Produkt umlagern, wie z.B. i- und Na-Enolate. Stabilität der Enolate: B > Li > Na

(Li-Enolate lagern sich ab 0°C, Na-Enolate schon ab –78°C um)

Stereoslektivität von E- bzw Z-Enolaten:

E-Enolate ergeben anti-Produkte und Z-Enolate geben syn-Produkte. Der Übergangszustand (Zimmerman-Traxler-Modell) ist ein 6-glidriger Ring, der zu den Produkten führt. Für andere Reaktionsbedingungen gibt es andere möglich ÜZ, die zu anderen Produkten führen (Boat-, Twist-, Open Chain-Modell), deshalb ist die Regel E-Enolat \rightarrow anti und Z-Enolat \rightarrow syn nur als Richtlinie nicht als Notwendigkeit anzusehen.

Beispiele für syn*- bzw. anti*-Alkylierung:


Titan ist ein sehr syn-selektiver Katalysator, der praktisch keine anti-Produkte liefert! Bevorzugt wird hierbei das syn-syn Produkt, man kann jedoch durch andere Reaktionsbedingungen (statt TiCl₄ verwendet man ClTi[0-iPr]₃ in THF) auch syn-anti-Produkte bevorzugt erhalten.

* bezieht sich immer auf die hervorgehobene neu geknüpfte Bindung!

Anti*:

Um anti-Selektivität zu erhalten bedarf es einer Katalyse einer sterisch gehinderten Substanz, die einerseits nur E-Enolat liefert und andererseits die Reaktion zum anti-Produkt steuert. Variation der Bedingungen (statt TMSO \rightarrow TBDMSO (**t-Bu-dim**ethyl-siloxy-) und RCHO in ClTi[0-iPr]₃/HMPA = (Me₂N)₃PO) führt zu anti-anti-Produkten

Kinetische bzw. thermodynamische Kontrolle:

^{*} bezieht sich immer auf die hervorgehobene neu geknüpfte Bindung!