Versuch 15: Temperaturabhängigkeit der EMK durchgeführt am 14.06.2004

Versuchsziel:

Ziel des Versuches ist es, die elektromotorische Kraft (EMK, auch Quellenspannung) eines Clark-Elements bei verschiedenen Temperaturen zu messen und davon ausgehend die Änderungen der Entropie ΔS , der Enthalpie ΔH sowie der Gibbs'schen freien Enthalpie ΔG in Abhängigkeit von der Temperatur T zu berechnen.

Theoretischer Hintergrund:

Der Aufbau der Clark-Zelle ist der folgende:

$$Hg|Hg_2SO_4(s)|ZnSO_{4, (sat. aq)}|ZnSO_4 7H_2O(s)|Zn$$

in ihr wird Quecksilber(I) zu elementarem Quecksilber reduziert gemäß:

$$Zn + Hg_2SO_4 + 7H_2O \rightarrow ZnSO_4 \cdot 7H_2O + 2Hg$$

Die Beziehung zwischen der freien Enthalpie ΔG , und der Elektromotorischen Kraft ist über die *Faraday-Konstante* gegeben:

$$\Delta G = -z \cdot F \cdot \Delta E$$

mit F = 96490 C/mol.

Nach Gibbs setzt sich die Freie Enthalpie ebenso aus der Entropie, der Temperatur und der Enthalpie eines Systems zusammen; mit der Entropie als der Ableitung der Freien Enthalpie nach der Temperatur ergibt sich:

$$\Delta G = \Delta H - T \cdot \Delta S = \Delta H - T \left(\frac{\partial \Delta G}{\partial T} \right)_{p}$$

Kombiniert man beide Gleichungen, so gelangt man über

$$\Delta S = z \cdot F \cdot (\frac{\partial \Delta E}{\partial T})_{p}$$

zu

$$\Delta H = -z \cdot F \cdot \Delta E + z \cdot F \cdot T \cdot (\frac{\partial \Delta E}{\partial T})_{p}$$

Mit diesen Zusammenhängen kann bei veränderter Temperatur auf die thermodynamischen Größen geschlossen werden.

Durchführung und Auswertung:

Gemäß der Praktikumsvorschrift wurde mittels eines Umlaufthermostaten die Clark-Zelle von 15°C in Schritten von 5°C auf 35°C erwärmt, jedesmal die EMK gemessen, und dann analog wieder abgekühlt und gemessen.

Zu den Berechnungen der thermodynamischen Größen:

Berechnung von ΔG :

 ΔG berechnet sich nach Gleichung 15.2 im Skript nach:

$$\Delta G = -z \cdot F \cdot \Delta E$$

(Werte siehe Tabelle)

Berechnung von ΔS :

Gleichung 15.1: $\Delta G = \Delta H - T \cdot \Delta S$

Gleichung 15.2: $\Delta G = -z \cdot F \cdot \Delta E$

über ΔG Gleichsetzen: $-z \cdot F \cdot \Delta E = \Delta H - T \cdot \Delta S$

durch -zF dividieren: $\Delta E = \frac{\Delta H}{-z \cdot F} - \frac{\Delta S}{-z \cdot F} \cdot T$

Beim Auftragen von ΔE gegen T ergibt sich ΔS / -zF als Steigung.

$$-0,0004 = \frac{\Delta S}{-z \cdot F} \rightarrow \Delta S = -0,0004 \cdot (-z) \cdot F = -0,0004 \cdot (-2) \cdot 96490 = 77,192$$

(Werte siehe Tabelle)

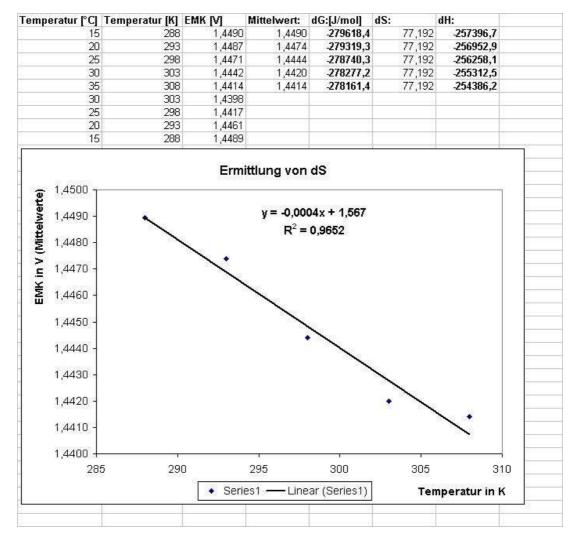
Berechnung von ΔH :

Gleichung 15.3: $\Delta S = z \cdot F \cdot (\frac{\partial \Delta E}{\partial T})$

Gleichung 15.4: $\Delta H = -z \cdot F \cdot \Delta E + T \cdot z \cdot F \cdot (\frac{\partial \Delta E}{\partial T})$

beide Gleichungen gleichsetzen: $\Delta H = -z \cdot F \cdot \Delta E + T \cdot \Delta S$

(Werte siehe Tabelle)



Das Ziel des Versuchs konnte erreicht werden, es wurden keine Unstimmigkeiten oder Fehler gefunden.

v.d.Hoff Wagner